资源论文Towards Scene Understanding: Unsupervised Monocular Depth Estimation with Semantic-aware Representation

Towards Scene Understanding: Unsupervised Monocular Depth Estimation with Semantic-aware Representation

2019-09-27 | |  109 |   41 |   0

 Abstract Monocular depth estimation is a challenging task in scene understanding, with the goal to acquire the geometric properties of 3D space from 2D images. Due to the lack of RGB-depth image pairs, unsupervised learning methods aim at deriving depth information with alternative supervision such as stereo pairs. However, most existing works fail to model the geometric structure of objects, which generally results from considering pixel-level objective functions during training. In this paper, we propose SceneNet to overcome this limitation with the aid of semantic understanding from segmentation. Moreover, our proposed model is able to perform region-aware depth estimation by enforcing semantics consistency between stereo pairs. In our experiments, we qualitatively and quantitatively verify the effectiveness and robustness of our model, which produces favorable results against the state-of-the-art approaches do

上一篇:Sim-Real Joint Reinforcement Transfer for 3D Indoor Navigation

下一篇:Unsupervised Multi-modal Neural Machine Translation

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...