资源论文Optimal Classification with Multivariate Losses

Optimal Classification with Multivariate Losses

2020-03-05 | |  68 |   41 |   0

Abstract

Multivariate loss functions are extensively employed in several prediction tasks arising in Infor mation Retrieval. Often, the goal in the tasks is t minimize expected loss when retrieving relevant items from a presented set of items, where the expectation is with respect to the joint distribution over item sets. Our key result is that for most multivariate losses, the expected loss is provably optimized by sorting the items by the conditional probability of label being positive and then selecting top k items. Such a result was previously known only for the F -measure. Leveraging on the optimality characterization, we give an algorithm for estimating optimal predictions in practice with runtime quadratic in size of item sets for many losses. We provide empirical results on benchmark datasets, comparing the proposed algorithm to state-of-the-art methods for optimizing multivariate losses.

上一篇:Variance-Reduced and Projection-Free Stochastic Optimization

下一篇:A Subspace Learning Approach for High Dimensional Matrix Decomposition with Efficient Column/Row Sampling

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...