资源论文Gaussian process nonparametric tensor estimator and its minimax optimality

Gaussian process nonparametric tensor estimator and its minimax optimality

2020-03-05 | |  84 |   61 |   0

Abstract

We investigate the statistical efficiency of a nonparametric Gaussian process method for a nonlinear tensor estimation problem. Low-rank tensor estimation has been used as a method to learn higher order relations among several data sources in a wide range of applications, such as multitask learning, recommendation systems, and spatiotemporal analysis. We consider a general setting where a common linear tensor learning is extended to a nonlinear learning problem in reproducing kernel Hilbert space and propose a nonparametric Bayesian method based on the Gaussian process method. We prove its statistical convergence rate without assuming any strong convexity, such as restricted strong convexity. Remarkably, it is shown that our convergence rate achieves the minimax optimal rate. We apply our proposed method to multi-task learning and show that our method significantly outperforms existing methods through numerical experiments on real-world data sets.

上一篇:A Subspace Learning Approach for High Dimensional Matrix Decomposition with Efficient Column/Row Sampling

下一篇:On the Quality of the Initial Basin in Overspecified Neural Networks

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...