资源论文Interacting Particle Markov Chain Monte Carlo

Interacting Particle Markov Chain Monte Carlo

2020-03-05 | |  115 |   95 |   0

Abstract

We introduce interacting particle Markov chain Monte Carlo (iPMCMC), a PMCMC method based on an interacting pool of standard and conditional sequential Monte Carlo samplers. Like related methods, iPMCMC is a Markov chain Monte Carlo sampler on an extended space. We present empirical results that show significant improvements in mixing rates relative to both noninteracting PMCMC samplers and a single PMCMC sampler with an equivalent memory and computational budget. An additional advantage of the iPMCMC method is that it is suitable for distributed and multi-core architectures.

上一篇:Noisy Activation Functions

下一篇:Solving Ridge Regression using Sketched Preconditioned SVRG

用户评价
全部评价

热门资源

  • Deep Cross-media ...

    Cross-media retrieval is a research hotspot in ...

  • Regularizing RNNs...

    Recently, caption generation with an encoder-de...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Visual Reinforcem...

    For an autonomous agent to fulfill a wide range...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...