资源论文Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors

Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors

2020-03-05 | |  104 |   37 |   0

Abstract

We introduce a variational Bayesian neural network where the parameters are governed via a probability distribution on random matrices. Specifically, we employ a matrix variate Gaussian (Gupta & Nagar, 1999) parameter posterior distribution where we explicitly model the covariance among the input and output dimensions of each layer. Furthermore, with approximate covariance matrices we can achieve a more efficient way to represent those correlations that is also cheaper than fully factorized parameter posteriors. We further show that with the “local reprarametrization trick” (Kingma et al., 2015) on this posterior distribution we arrive at a Gaussian Process (Rasmussen, 2006) interpretation of the hidden units in each layer and we, similarly with (Gal & Ghahramani, 2015), provide connections with deep Gaussian processes. We continue in taking advantage of this duality and incorporate “pseudo-data” (Snelson & Ghahramani, 2005) in our model, which in turn allows for more efficient posterior sampling while maintaining the properties of the original model. The validity of the proposed approach is verified through extensive experiments.

上一篇:Low-Rank Matrix Approximation with Stability

下一篇:Learning Granger Causality for Hawkes Processes

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...