资源论文Persistent RNNs: Stashing Recurrent Weights On-Chip

Persistent RNNs: Stashing Recurrent Weights On-Chip

2020-03-05 | |  65 |   33 |   0

Abstract

This paper introduces a new technique for mapping Deep Recurrent Neural Networks (RNN) efficiently onto GPUs. We show how it is possible to achieve substantially higher computational throughput at low mini-batch sizes than direct implementations of RNNs based on matrix multiplications. The key to our approach is the use of persistent computational kernels that exploit the GPU’s inverted memory hierarchy to reuse network weights over multiple timesteps. Our initial implementation sustains 2.8 TFLOP/s at a minibatch size of 4 on an NVIDIA TitanX GPU. This provides a 16x reduction in activation memory footprint, enables model training with 12x more parameters on the same hardware, allows us to strongly scale RNN training to 128 GPUs, and allows us to efficiently explore end-to-end speech recognition models with over 100 layers.

上一篇:Simultaneous Safe Screening of Features and Samples in Doubly Sparse Modeling

下一篇:On Graduated Optimization for Stochastic Non-Convex Problems

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...