资源论文Sequence to Sequence Training of CTC-RNNs with Partial Windowing

Sequence to Sequence Training of CTC-RNNs with Partial Windowing

2020-03-06 | |  62 |   34 |   0

Abstract

Connectionist temporal classification (CTC) based supervised sequence training of recurrent neural networks (RNNs) has shown great success in many machine learning areas including endto-end speech and handwritten character recognition. For the CTC training, however, it is required to unroll (or unfold) the RNN by the length of an input sequence. This unrolling requires a lot of memory and hinders a small footprint implementation of online learning or adaptation. Furthermore, the length of training sequences is usually not uniform, which makes parallel training with multiple sequences inefficient on shared memory models such as graphics processing units (GPUs). In this work, we introduce an expectation-maximization (EM) based online CTC algorithm that enables unidirectional RNNs to learn sequences that are longer than the amount of unrolling. The RNNs can also be trained to process an infinitely long input sequence without pre-segmentation or external reset. Moreover, the proposed approach allows efficient parallel training on GPUs. Our approach achieves 20.7% phoneme error rate (PER) on the very long input sequence that is generated by concatenating all 192 utterances in the TIMIT core test set. In the end-to-end speech recognition task on the Wall Street Journal corpus, a network can be trained with only 64 times of unrolling with little performance loss.

上一篇:Evasion and Hardening of Tree Ensemble Classifiers

下一篇:SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...