资源论文Provable Non-convex Phase Retrieval with Outliers: Median Truncated Wirtinger Flow

Provable Non-convex Phase Retrieval with Outliers: Median Truncated Wirtinger Flow

2020-03-06 | |  53 |   46 |   0

Abstract

Solving systems of quadratic equations is a central problem in machine learning and signal processing. One important example is phase retrieval, which aims to recover a signal from only magnitudes of its linear measurements. This paper focuses on the situation when the measurements are corrupted by arbitrary outliers, for which the recently developed non-convex gradient descent Wirtinger flow (WF) and truncated Wirtinger flow (TWF) algorithms likely fail. We develop a novel median-TWF algorithm that exploits robustness of sample median to resist arbitrary outliers in the initialization and the gradien update in each iteration. We show that such a non-convex algorithm provably recovers the signal from a near-optimal number of measurements composed of i.i.d. Gaussian entries, up to a logarithmic factor, even when a constant portion of the measurements are corrupted by arbitrary outliers. We further show that median-TWF is also robust when measurements are corrupted by both arbitrary outliers and bounded noise. Our analysis of performance guarantee is accomplished by development of non-trivial concentration measures of median-related quantities, which may be of independent interest. We further provide numerical experiments to demonstrate the effectiveness of the approach.

上一篇:Parameter Estimation for Generalized Thurstone Choice Models

下一篇:Truthful Univariate Estimators

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...