资源论文Variational Inference for Monte Carlo Objectives

Variational Inference for Monte Carlo Objectives

2020-03-06 | |  47 |   37 |   0

Abstract

Recent progress in deep latent variable models has largely been driven by the development of flexible and scalable variational inference methods. Variational training of this type involves maximizing a lower bound on the log-likelihood, using samples from the variational posterior to compute the required gradients. Recently, Burda et al. (2016) have derived a tighter lower bound using a multi-sample importance sampling estimate of the likelihood and showed that optimizing it yields models that use more of their capacity and achieve higher likelihoods. This development showed the importance of such multisample objectives and explained the success of several related approaches. We extend the multi-sample approach to discrete latent variables and analyze the difficulty encountered when estimating the gradients involved. We then develop the first unbiased gradient estimator designed for importance-sampled objectives and evaluate it at training generative and structured output prediction models. The resulting estimator, which is based on low-variance per-sample learning signals, is both simpler and more effective than the NVIL estimator (Mnih & Gregor, 2014) proposed for the single-sample variational objective, and is competitive with the currently used biased estimators.

上一篇:Learning Mixtures of Plackett-Luce Models

下一篇:Train faster, generalize better: Stability of stochastic gradient descent

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...