资源论文k-variates++: more pluses in the k-means++

k-variates++: more pluses in the k-means++

2020-03-06 | |  63 |   60 |   0

Abstract

k-means++ seeding has become a de facto standard for hard clustering algorithms. In this paper, our first contribution is a two-way generalisation of this seeding, k-variates++, that includes the sampling of general densities rather than just a discrete set of Dirac densities anchored at the point locations, and a generalisation of the well known Arthur-Vassilvitskii (AV) approximation guarantee, in the form of a bias+variance approximation bound of the global optimum. This approximation exhibits a reduced dependency on the ”noise” component with respect to the optimal potential — actually approaching the statistical lower bound. We show that kvariates++ reduces to efficient (biased seeding) clustering algorithms tailored to specific frameworks; these include distributed, streaming and on-line clustering, with direct approximation results for these algorithms. Finally, we present a novel application of k-variates++ to differential privacy. For either the specific frameworks considered here, or for the differential privacy setting, there is little to no prior results on the dir application of k-means++ and its approximation bounds — state of the art contenders appear to be significantly more complex and / or display less favorable (approximation) properties. We stress that our algorithms can still be run in cases where there is no closed form solution for the population minimizer. We demonstrate the applicability of our analysis via experimental evaluation on several domains and settings, displaying competitive performances vs state of the art. Proceedings of the 33 rd International Conference on MachLearning, New York, NY, USA, 2016. JMLR: W&CP volume 48. Copyright 2016 by the author(s).

上一篇:Differentially Private Chi-Squared Hypothesis Testing: Goodness of Fit and Independence Testing

下一篇:A Comparative Analysis and Study of Multiview CNN Models for Joint Object Categorization and Pose Estimation

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...