资源论文 Opponent Modeling in Deep Reinforcement Learning

Opponent Modeling in Deep Reinforcement Learning

2020-03-06 | |  58 |   36 |   0

Abstract

Opponent modeling is necessary in multi-agent settings where secondary agents with competing goals also adapt their strategies, yet it remains challenging because strategies interact with each other and change. Most previous work focuses on developing probabilistic models or parameterized strategies for specific applications. Inspired by the recent success of deep reinforcement learning, we present neural-based models that jointly learn a policy and the behavior of opponents. Instead of explicitly predicting the opponent’s action, we encode observation of the opponents into a deep Q-Network (DQN); however, we retain explicit modeling (if desired) using multitasking. By using a Mixture-of-Experts architecture, our model automatically discovers different strategy patterns of opponents without extra supervision. We evaluate our models on a simulated soccer game and a popular trivia game, showing superior performance over DQN and its variants.

上一篇:Robust Random Cut Forest Based Anomaly Detection On Streams

下一篇:Ordinal Graphical Models: A Tale of Two Approaches

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...