资源论文Robust Structured Estimation with Single-Index Models

Robust Structured Estimation with Single-Index Models

2020-03-09 | |  70 |   50 |   0

Abstract

In this paper, we investigate general single-index models (SIMs) in high dimensions. Based on U -statistics, we propose two types of robust estimators for the recovery of model parameters, which can be viewed as generalizations of several existing algorithms for one-bit compressed sensing (1-bit CS). With minimal assumption on noise, the statistical guarantees are established for the generalized estimators under suitable conditions, which allow general structures of underlying parameter. Moreover, the proposed estimator is novelly instantiated for SIMs with monotone transfer function, and the obtained estimator can better leverage the monotonicity. Experimental results are provided to support our theoretical analyses.

上一篇:Meta Networks

下一篇:Averaged-DQN: Variance Reduction and Stabilization for Deep Reinforcement Learning

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...