资源论文MEC: Memory-efficient Convolution for Deep Neural Network

MEC: Memory-efficient Convolution for Deep Neural Network

2020-03-09 | |  119 |   53 |   0

Abstract

Convolution is a critical component in modern deep neural networks, thus several algorithms for convolution have been developed. Direct convolution is simple but suffers from poor performance. As an alternative, multiple indirect methods have been proposed including im2colbased convolution, FFT-based convolution, or Winograd-based algorithm. However, all these indirect methods have high memory-overhead, which creates performance degradation and offers a poor trade-off between performance and memory consumption. In this work, we propose a memory-efficient convolution or MEC with compact lowering, which reduces memoryoverhead substantially and accelerates convolution process. MEC lowers the input matrix in a simple yet efficient/compact way (i.e., much less memory-overhead), and then executes multiple small matrix multiplications in parallel to get convolution completed. Additionally, the reduced memory footprint improves memory subsystem efficiency, improving performance. Our experimental results show that MEC reduces memory consumption significantly with good speedup on both mobile and server platforms, compared with other indirect convolution algorithms.

上一篇:Toward Efficient and Accurate Covariance Matrix Estimation on Compressed Data

下一篇:Pain-Free Random Differential Privacy with Sensitivity Sampling

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...