资源论文End-to-End Learning for Structured Prediction Energy Networks

End-to-End Learning for Structured Prediction Energy Networks

2020-03-09 | |  57 |   46 |   0

Abstract

Structured Prediction Energy Networks (SPENs) are a simple, yet expressive family of structured prediction models (Belanger & McCallum, 2016). An energy function over candidate structured outputs is given by a deep network, and predictions are formed by gradient-based optimization. This paper presents end-to-end learning for SPENs, where the energy function is discriminatively trained by back-propagating through gradient-based prediction. In our experience, the approach is substantially more accurate than the structured SVM method of Belanger & McCallum (2016), as it allows us to use more sophisticated non-convex energies. We provide a collection of techniques for improving the speed, accuracy, and memory requirements of end-to-end SPENs, and demonstrate the power of our method on 7-Scenes image denoising and CoNLL-2005 semantic role labeling tasks. In both, inexact minimization of non-convex SPEN energies is superior to baseline methods that use simplistic energy functions that can be minimized exactly.

上一篇:Scalable Multi-Class Gaussian Process Classification using Expectation Propagation

下一篇:Optimal Algorithms for Smooth and Strongly Convex Distributed Optimization in Networks

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...