资源论文Convex Phase Retrieval without Lifting via PhaseMax

Convex Phase Retrieval without Lifting via PhaseMax

2020-03-09 | |  59 |   43 |   0

Abstract

Semidefinite relaxation methods transform a variety of non-convex optimization problems into convex problems, but square the number of variables. We study a new type of convex relaxation for phase retrieval problems, called PhaseMax, that convexifies the underlying problem without lifting. The resulting problem formulation can be solved using standard convex optimization routines, while still working in the original, lowdimensional variable space. We prove, using a random spherical distribution measurement model, that PhaseMax succeeds with high probability for a sufficiently large number of measurements. We compare our approach to other phase retrieval methods and demonstrate that our theory accurately predicts the success of PhaseMax.

上一篇:Optimal Algorithms for Smooth and Strongly Convex Distributed Optimization in Networks

下一篇:Accelerating Eulerian Fluid Simulation With Convolutional Networks

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...