资源算法bert-summarization

bert-summarization

2020-03-10 | |  68 |   0 |   0

Implementation of 'Pretraining-Based Natural Language Generation for Text Summarization'

Paper: https://arxiv.org/pdf/1902.09243.pdf

Versions

  • python 2.7

  • PyTorch: 1.0.1.post2

Preparing package/dataset

  1. Run: pip install -r requirements.txt to install required packages

  2. Download chunk CNN/DailyMail data from: https://github.com/JafferWilson/Process-Data-of-CNN-DailyMail

  3. Run: python news_data_reader.py to create pickle file that will be used in my data-loader

Running the model

For me, the model was too big for my GPU, so I used smaller parameters as following for debugging purpose. CUDA_VISIBLE_DEVICES=3 python main.py --cuda --batch_size=2 --hop 4 --hidden_dim 100

Note to reviewer:

  • Although I implemented the core-part (2-step summary generation using BERT), I didn't have enough time to implement RL section.

  • The 2nd decoder process is very time-consuming (since it needs to create BERT context vector for each timestamp).


上一篇:bert-as-language-model

下一篇: VL-BERT

用户评价
全部评价

热门资源

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • My_DrQA

    My_DrQA A re-implement DrQA based on Pytorch

  • ETD_cataloguing_a...

    ETD catalouging project using allennlp

  • allennlp_extras

    allennlp_extras Some utilities build on top of...

  • honk-honk-motherf...

    honk-honk-motherfucker