资源算法torch-sampling

torch-sampling

2019-09-27 | |  151 |   0 |   0

High-Level Training, Data Augmentation, and Utilities for Pytorch

v0.1.3 JUST RELEASED - contains significant improvements, bug fixes, and additional support. Get it from the releases, or pull the master branch.

This package provides a few things:

  • A high-level module for Keras-like training with callbacks, constraints, and regularizers.

  • Comprehensive data augmentation, transforms, sampling, and loading

  • Utility tensor and variable functions so you don't need numpy as often

Have any feature requests? Submit an issue! I'll make it happen. Specifically, any data augmentation, data loading, or sampling functions.

Want to contribute? Check the issues page for those tagged with [contributions welcome].

ModuleTrainer

The ModuleTrainer class provides a high-level training interface which abstracts away the training loop while providing callbacks, constraints, initializers, regularizers, and more.

Example:

from torchsample.modules import ModuleTrainer# Define your model EXACTLY as normalclass Network(nn.Module):    def __init__(self):        super(Network, self).__init__()        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)        self.conv2 = nn.Conv2d(32, 64, kernel_size=3)        self.fc1 = nn.Linear(1600, 128)        self.fc2 = nn.Linear(128, 10)    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2(x), 2))
        x = x.view(-1, 1600)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)        return F.log_softmax(x)

model = Network()
trainer = ModuleTrainer(model)

trainer.compile(loss='nll_loss',                optimizer='adadelta')

trainer.fit(x_train, y_train, 
            val_data=(x_test, y_test),            num_epoch=20, 
            batch_size=128,            verbose=1)

You also have access to the standard evaluation and prediction functions:

loss = model.evaluate(x_train, y_train)
y_pred = model.predict(x_train)

Torchsample provides a wide range of callbacks, generally mimicking the interface found in Keras:

  • EarlyStopping

  • ModelCheckpoint

  • LearningRateScheduler

  • ReduceLROnPlateau

  • CSVLogger

from torchsample.callbacks import EarlyStopping

callbacks = [EarlyStopping(monitor='val_loss', patience=5)]
model.set_callbacks(callbacks)

Torchsample also provides regularizers:

  • L1Regularizer

  • L2Regularizer

  • L1L2Regularizer

and constraints:

  • UnitNorm

  • MaxNorm

  • NonNeg

Both regularizers and constraints can be selectively applied on layers using regular expressions and the module_filter argument. Constraints can be explicit (hard) constraints applied at an arbitrary batch or epoch frequency, or they can be implicit (soft) constraints similar to regularizers where the the constraint deviation is added as a penalty to the total model loss.

from torchsample.constraints import MaxNorm, NonNegfrom torchsample.regularizers import L1Regularizer# hard constraint applied every 5 batcheshard_constraint = MaxNorm(value=2., frequency=5, unit='batch', module_filter='*fc*')# implicit constraint added as a penalty term to model losssoft_constraint = NonNeg(lagrangian=True, scale=1e-3, module_filter='*fc*')
constraints = [hard_constraint, soft_constraint]
model.set_constraints(constraints)

regularizers = [L1Regularizer(scale=1e-4, module_filter='*conv*')]
model.set_regularizers(regularizers)

You can also fit directly on a torch.utils.data.DataLoader and can have a validation set as well :

from torchsample import TensorDatasetfrom torch.utils.data import DataLoader

train_dataset = TensorDataset(x_train, y_train)
train_loader = DataLoader(train_dataset, batch_size=32)

val_dataset = TensorDataset(x_val, y_val)
val_loader = DataLoader(val_dataset, batch_size=32)

trainer.fit_loader(loader, val_loader=val_loader, num_epoch=100)

Utility Functions

Finally, torchsample provides a few utility functions not commonly found:

Tensor Functions

  • th_iterproduct (mimics itertools.product)

  • th_gather_nd (N-dimensional version of torch.gather)

  • th_random_choice (mimics np.random.choice)

  • th_pearsonr (mimics scipy.stats.pearsonr)

  • th_corrcoef (mimics np.corrcoef)

  • th_affine2d and th_affine3d (affine transforms on torch.Tensors)

Variable Functions

  • F_affine2d and F_affine3d

  • F_map_coordinates2d and F_map_coordinates3d

Data Augmentation and Datasets

The torchsample package provides a ton of good data augmentation and transformation tools which can be applied during data loading. The package also provides the flexible TensorDataset and FolderDataset classes to handle most dataset needs.

Torch Transforms

These transforms work directly on torch tensors

  • Compose()

  • AddChannel()

  • SwapDims()

  • RangeNormalize()

  • StdNormalize()

  • Slice2D()

  • RandomCrop()

  • SpecialCrop()

  • Pad()

  • RandomFlip()

  • ToTensor()

Affine Transforms

orig1.pngtform1.png


The following transforms perform affine (or affine-like) transforms on torch tensors.

  • Rotate()

  • Translate()

  • Shear()

  • Zoom()

We also provide a class for stringing multiple affine transformations together so that only one interpolation takes place:

  • Affine()

  • AffineCompose()

Datasets and Sampling

We provide the following datasets which provide general structure and iterators for sampling from and using transforms on in-memory or out-of-memory data:

  • TensorDataset()

  • FolderDataset()

Acknowledgements

Thank you to the following people and contributors:

  • All Keras contributors

  • @deallynomore

  • @recastrodiaz


上一篇:functional zoo

下一篇:aorun

用户评价
全部评价

热门资源

  • Keras-ResNeXt

    Keras ResNeXt Implementation of ResNeXt models...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • spark-corenlp

    This package wraps Stanford CoreNLP annotators ...

  • capsnet-with-caps...

    CapsNet with capsule-wise convolution Project ...

  • inferno-boilerplate

    This is a very basic boilerplate example for pe...