资源论文A Birth-Death Process for Feature Allocation

A Birth-Death Process for Feature Allocation

2020-03-10 | |  61 |   41 |   0

Abstract

We propose a Bayesian nonparametric prior over feature allocations for sequential data, the birthdeath feature allocation process (BDFP). The BDFP models the evolution of the feature allocation of a set of N objects across a covariate (e.g. time) by creating and deleting features. A BDFP is exchangeable, projective, stationary and reversible, and its equilibrium distribution is given by the Indian buffet process (IBP). We show that the Beta process on an extended space is the de Finetti mixing distribution underlying the BDFP. Finally, we present the finite approximation of the BDFP, the Beta Event Process (BEP), that permits simplified inference. The utility of the BDFP as a prior is demonstrated on real world dynamic genomics and social network data.

上一篇:Online Learning to Rank in Stochastic Click Models

下一篇:PixelCNN Models with Auxiliary Variables for Natural Image Modeling

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...