资源论文Learning Compact Neural Networks with Regularization

Learning Compact Neural Networks with Regularization

2020-03-11 | |  76 |   48 |   0

Abstract

Proper regularization is critical for speeding up training, improving generalization performance, and learning compact models that are cost efficient. We propose and analyze regularized gradient descent algorithms for learning shallow neural networks. Our framework is general and covers weight-sharing (convolutional networks), sparsity (network pruning), and low-rank constraints among others. We first introduce covering dimension to quantify the complexity of the constraint set and provide insights on the generalization properties. Then, we show that proposed algorithms become well-behaved and local linear convergence occurs once the amount of data exceeds the covering dimension. Overall, our results demonstrate that near-optimal sample complexity is sufficient for efficient learning and illustrat how regularization can be beneficial to learn over parameterized networks.

上一篇:Differentially Private Matrix Completion Revisited

下一篇:The Edge Density Barrier: Computational-Statistical Tradeoffs in Combinatorial Inference

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...