资源论文Discovering Interpretable Representations for Both Deep Generative and Discriminative Models

Discovering Interpretable Representations for Both Deep Generative and Discriminative Models

2020-03-16 | |  58 |   43 |   0

Abstract

Interpretability of representations in both deep generative and discriminative models is highly desirable. Current methods jointly optimize an objective combining accuracy and interpretability. However, this may reduce accuracy, and is not applicable to already trained models. We propose two interpretability frameworks. First, we provide an interpretable lens for an existing model. We use a generative model which takes as input the representation in an existing (genera tive or discriminative) model, weakly supervised by limited side information. Applying a flexible and invertible transformation to the input leads to an interpretable representation with no loss in accuracy. We extend the approach using an active learning strategy to choose the most useful side information to obtain, allowing a human to guide what “interpretable” means. Our second framework relies on joint optimization for a representation which is both maximally informative about the side information and maximally compressive about the non-interpretable data factors. This leads to a novel perspective on the relationship between compression and regularization. We also propose a new interpretability evaluation metric based on our framework. Empirically, we achieve state-of-the-art results on thre datasets using the two proposed algorithms.

上一篇:Bounding and Counting Linear Regions of Deep Neural Networks

下一篇:Streaming Principal Component Analysis in Noisy Settings

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...