资源论文Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval and Matrix Completion

Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval and Matrix Completion

2020-03-16 | |  72 |   37 |   0

Abstract

Recent years have seen a flurry of activities in d signing provably efficient nonconvex optimization procedures for solving statistical estimation prob lems. For various problems like phase retrieval or low-rank matrix completion, state-of-the-art nonconvex procedures require proper regularization (e.g. trimming, regularized cost, projection) in o der to guarantee fast convergence. When it comes to vanilla procedures such as gradient descent, however, prior theory either recommends highly conservative learning rates to avoid overshooting, or completely lacks performance guarantees. This paper uncovers a striking phenomenon in several nonconvex problems: even in the absence of explicit regularization, gradient descent follows a trajectory staying within a basin that enjoys nice geometry, consisting of points incoherent with the sampling mechanism. This “implicit regularization” feature allows gradient descent to proceed i a far more aggressive fashion without overshooting, which in turn results in substantial computational savings. Focusing on two statistical esti mation problems, i.e. solving random quadratic systems of equations and low-rank matrix completion, we establish that gradient descent achieves near-optimal statistical and computational guarantees without explicit regularization. As a byproduct, for noisy matrix completion, we demonstrate that gradient descent enables optimal control of both entrywise and spectral-norm errors.

上一篇:Dynamic Evaluation of Neural Sequence Models

下一篇:Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...