资源论文Noisy Natural Gradient as Variational Inference

Noisy Natural Gradient as Variational Inference

2020-03-16 | |  45 |   43 |   0

Abstract

Variational Bayesian neural nets combine the flexibility of deep learning with Bayesian uncertainty estimation. Unfortunately, there is a tradeoff between cheap but simple variational families (e.g. fully factorized) or expensive and complicated inference procedures. We show that natural gradient ascent with adaptive weight noise implicitly fits a variational posterior to maximize the evidence lower bound (ELBO). This insight allows us to train full-covariance, fully factorized, or matrix-variate Gaussian variational posteriors using noisy versions of natural gradient, Adam, and K-FAC, respectively, making it possible to scale up to modern-size conv nets. On standard regression benchmarks, our noisy K-FAC algorithm makes better predictions and matches Hamiltonian Monte Carlo’s predictive variances better than existing methods. Its improved uncertainty estimates lead to more efficient exploration in active learning, and intrinsic motivation for reinforcement learning.

上一篇:SparseMAP: Differentiable Sparse Structured Inference

下一篇:Fast Decoding in Sequence Models Using Discrete Latent Variables

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...