资源论文Differentiable Dynamic Programming for Structured Prediction and Attention

Differentiable Dynamic Programming for Structured Prediction and Attention

2020-03-16 | |  51 |   39 |   0

Abstract

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, many DP algorithms are non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on structured prediction (audio-to-score alignment, NER) and on structured and sparse attention for translation. Modern neural networks are composed of multiple layers of nested functions. Although layers usually consist of elementary linear algebraic operations and simple non-linearities, there is a growing need for layers that outpvalue or the solution of an optimization problem.

上一篇:Stein Variational Message Passing for Continuous Graphical Models

下一篇:Semi-Supervised Learning on Data Streams via Temporal Label Propagation

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...