资源论文Geodesic Convolutional Shape Optimization

Geodesic Convolutional Shape Optimization

2020-03-16 | |  35 |   36 |   0

Abstract

Aerodynamic shape optimization has many industrial applications. Existing methods, however, are so computationally demanding that typical engineering practices are to either simply try a limite number of hand-designed shapes or restrict oneself to shapes that can be parameterized using only few degrees of freedom. In this work, we introduce a new way to optimize complex shapes fast and accurately. To this end, we train Geodesic Convolutional Neural Networks to emulate a fluidynamics simulator. The key to making this approach practical is remeshing the original shape using a poly-cube map, which makes it possible to perform the computations on GPUs instead of CPUs. The neural net is then used to formulate an objective function that is differentiable with respect to the shape parameters, which can then be optimized using a gradient-based technique. This outperforms state-of-the-art methods by 5 to 20% for standard problems and, even more importantly, our approach applies to cases that previous methods cannot handle.

上一篇:Hierarchical Clustering with Structural Constraints

下一篇:Differentially Private Database Release via Kernel Mean Embeddings

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...