资源论文Differentiable Compositional Kernel Learning for Gaussian Processes

Differentiable Compositional Kernel Learning for Gaussian Processes

2020-03-19 | |  37 |   38 |   0

Abstract

The generalization properties of Gaussian processes depend heavily on the choice of kernel, and this choice remains a dark art. We present the Neural Kernel Network (NKN), a flexible family of kernels represented by a neural network. The NKN’s architecture is based on the composition rules for kernels, so that each unit of the network corresponds to a valid kernel. It can compactly approximate compositional kernel structures such as those used by the Automatic Statistician (Lloyd et al., 2014), but because the architecture is diff entiable, it is end-to-end trainable with gradientbased optimization. We show that the NKN is universal for the class of stationary kernels. Empirically we demonstrate NKN’s pattern discovery and extrapolation abilities on several tasks that depend crucially on identifying the underlying structure, including time series and texture extrapolation, as well as Bayesian optimization.

上一篇:Learning Representations and Generative Models for 3D Point Clouds

下一篇:High-Quality Prediction Intervals for Deep Learning: A Distribution-Free, Ensembled Approach

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...