资源论文Unbiased Objective Estimation in Predictive Optimization

Unbiased Objective Estimation in Predictive Optimization

2020-03-19 | |  80 |   47 |   0

Abstract

For data-driven decision-making, one promising approach, called predictive optimization, is to solve maximization problems i n which the objective function to be maximized is estimated from data. Predictive optimization, however, suffers from the problem of a calculated optimal solution’s being evaluated too optimistically, i.e., th value of the objective function is overestimated. This paper investigates such optimistic bias and presents two methods for correcting it. The first, which is analogous to cross-validation, successfully corrects the optimistic bias but results in underestimation of the true value. Our second method employs resampling techniques to avoid both overestimation and underestimation. We show that the second method, referred to as the parameter perturbation method, achieves asymptotically unbiased estimation. Empirical results for both artificial and real-world datasets demonstrate that our proposed approach successfully corrects the optimistic bias.

上一篇:Gradient Coding from Cyclic MDS Codes and Expander Graphs

下一篇:ADMM and Accelerated ADMM as Continuous Dynamical Systems

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...