资源论文ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs

ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs

2019-09-29 | |  43 |   41 |   0
Abstract Residual neural networks can be viewed as the forward Euler discretization of an Ordinary Differential Equation (ODE) with a unit time step. This has recently motivated researchers to explore other discretization approaches and train ODE based networks. However, an important challenge of neural ODEs is their prohibitive memory cost during gradient backpropogation. Recently a method proposed in [Chen et al., 2018], claimed that this memory overhead can be reduced from O(LNt), where Nt is the number of time steps, down to O(L) by solving forward ODE backwards in time, where L is the depth of the network. However, we will show that this approach may lead to several problems: (i) it may be numerically unstable for ReLU/nonReLU activations and general convolution operators, and (ii) the proposed optimize-then-discretize approach may lead to divergent training due to inconsistent gradients for small time step sizes. We discuss the underlying problems, and to address them we propose ANODE, an Adjoint based Neural ODE framework which avoids the numerical instability related problems noted above, and provides unconditionally accurate gradients. ANODE has a memory footprint of O(L) +O(Nt), with the same computational cost as reversing ODE solve. We furthermore, discuss a memory efficient algorithm which can further reduce this footprint with a trade-off of additional computational cost. We show results on Cifar-10/100 datasets using ResNet and SqueezeNext neural networks

上一篇:A Regularized Opponent Model with Maximum Entropy Objective

下一篇:Asynchronous Stochastic Frank-Wolfe Algorithms for Non-Convex Optimization

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...