资源论文Hierarchical Organization of Shapes for Efficient Retrieval

Hierarchical Organization of Shapes for Efficient Retrieval

2020-03-25 | |  51 |   39 |   0

Abstract. This paper presents a geometric approach to perform: (i) hierarchical clustering of imaged objects according to the shapes of their boundaries, and (ii) testing of observed shapes for classification. An intrinsic metric on nonlinear, infinite-dimensional shape space, obtained using geodesic lengths, is used for clustering. This analysis is landmark free, does not require embedding shapes in R2, and uses ordinary differential equations for flows (as opposed to partial differential equations). Intrinsic analysis also leads to well defined shape statistics such as means and covariances, and is computationally efficient. Clustering is performed in a hierarchical fashion. At any level of hierarchy clusters are generated using a minimum dispersion criterion and an MCMC-type search algorithm. Cluster means become elements to be clustered at the next level. Gaussian models on tangent spaces are used to pose binary or multiple hypothesis tests for classifying observed shapes. Hierarchical clustering and shape testing combine to form an efficient tool for shape retrieval from a large database of shapes. For databases with n shapes, the searches are performed using log(n) tests on average. Examples are presented for demonstrating these tools using shapes from Kimia shape database and the Surrey fish database

上一篇:Camera Calibration with Two Arbitrary Coplanar Circles

下一篇:Consistency Conditions on the Medial Axis

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...