face.iot
One saturday morning I was having a breakfast and I discovered face_recognition project (https://github.com/ageitgey/face_recognition). I started to play with the opencv example. I put my picture and, Wow! ! it works like a charm. It's pretty straightforward to detect my face and also I can obtain face landmarks. One of the landmark that I can obtain is the nose tip. Playing with this script I realized that with the nose tip I can figure out the position of the face. As well as I have a new iot device (one ESP32) I wanted to do something with it. For example control a servo (SG90) and move it from left to right depending on my face position.
First we have the main python script. With this script I detect my face, the nose tip and the position of my face. With this position I will emit an event to a mqtt broker (a mosquitto server running on my laptop).
import face_recognitionimport cv2import numpy as npimport mathimport paho.mqtt.client as mqtt
video_capture = cv2.VideoCapture(0)
gonzalo_image = face_recognition.load_image_file("gonzalo.png")
gonzalo_face_encoding = face_recognition.face_encodings(gonzalo_image)[0]
known_face_encodings = [
gonzalo_face_encoding
]
known_face_names = [ "Gonzalo"]RED = (0, 0, 255)GREEN = (0, 255, 0)BLUE = (255, 0, 0)
face_locations = []
face_encodings = []
face_names = []
process_this_frame = Truestatus = ''labelColor = GREENclient = mqtt.Client()
client.connect("localhost", 1883, 60)while True:
ret, frame = video_capture.read() # Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_landmarks_list = face_recognition.face_landmarks(rgb_small_frame, face_locations)
face_names = [] for face_encoding, face_landmarks in zip(face_encodings, face_landmarks_list):
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
if True in matches:
first_match_index = matches.index(True)
name = known_face_names[first_match_index]
nose_tip = face_landmarks['nose_tip']
maxLandmark = max(nose_tip)
minLandmark = min(nose_tip)
diff = math.fabs(maxLandmark[1] - minLandmark[1]) if diff < 2:
status = "center"
labelColor = BLUE
client.publish("/face/{}/center".format(name), "1") elif maxLandmark[1] > minLandmark[1]:
status = ">>>>"
labelColor = RED
client.publish("/face/{}/left".format(name), "1") else:
status = "<<<<"
client.publish("/face/{}/right".format(name), "1")
labelColor = RED
shape = np.array(face_landmarks['nose_bridge'], np.int32)
cv2.polylines(frame, [shape.reshape((-1, 1, 2)) * 4], True, (0, 255, 255))
cv2.fillPoly(frame, [shape.reshape((-1, 1, 2)) * 4], GREEN)
face_names.append("{} {}".format(name, status)) for (top, right, bottom, left), name in zip(face_locations, face_names): # Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
if 'Unknown' not in name.split(' '):
cv2.rectangle(frame, (left, top), (right, bottom), labelColor, 2)
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), labelColor, cv2.FILLED)
cv2.putText(frame, name, (left + 6, bottom - 6), cv2.FONT_HERSHEY_DUPLEX, 1.0, (255, 255, 255), 1) else:
cv2.rectangle(frame, (left, top), (right, bottom), BLUE, 2)
cv2.imshow('Video', frame) if cv2.waitKey(1) & 0xFF == ord('q'): breakvideo_capture.release()
cv2.destroyAllWindows()Now another Python script will be listening to mqtt events and it will trigger one event with the position of the servo.
import paho.mqtt.client as mqttclass Iot:
_state = None
_client = None
_dict = { 'left': 0, 'center': 1, 'right': 2
} def __init__(self, client): self._client = client def emit(self, name, event): if event != self._state: self._state = event self._client.publish("/servo", self._dict[event]) print("emit /servo envent with value {} - {}".format(self._dict[event], name))def on_message(topic, iot):
data = topic.split("/")
name = data[2]
action = data[3]
iot.emit(name, action)
client = mqtt.Client()
iot = Iot(client)
client.on_connect = lambda self, mosq, obj, rc: self.subscribe("/face/#")
client.on_message = lambda client, userdata, msg: on_message(msg.topic, iot)
client.connect("localhost", 1883, 60)
client.loop_forever()And finally the ESP32. Here will connect to my wifi and to my mqtt broker.
#include <WiFi.h>#include <PubSubClient.h>#define LED0 17#define LED1 18#define LED2 19#define SERVO_PIN 5// wifi configurationconst char* ssid = "my_ssid";const char* password = "my_wifi_password";// mqtt configurationconst char* server = "192.168.1.111"; // mqtt broker ipconst char* topic = "/servo";const char* clientName = "com.gonzalo123.esp32";int channel = 1;int hz = 50;int depth = 16;
WiFiClient wifiClient;
PubSubClient client(wifiClient);void wifiConnect() {
Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, password); while (WiFi.status() != WL_CONNECTED) { delay(500);
Serial.print("*");
}
Serial.print("WiFi connected: ");
Serial.println(WiFi.localIP());
}void mqttReConnect() { while (!client.connected()) {
Serial.print("Attempting MQTT connection..."); if (client.connect(clientName)) {
Serial.println("connected");
client.subscribe(topic);
} else {
Serial.print("failed, rc=");
Serial.print(client.state());
Serial.println(" try again in 5 seconds"); delay(5000);
}
}
}void callback(char* topic, byte* payload, unsigned int length) {
Serial.print("Message arrived [");
Serial.print(topic);
String data; for (int i = 0; i < length; i++) {
data += (char)payload[i];
} int value = data.toInt(); cleanLeds(); switch (value) { case 0: ledcWrite(1, 3400); digitalWrite(LED0, HIGH); break; case 1: ledcWrite(1, 4900); digitalWrite(LED1, HIGH); break; case 2: ledcWrite(1, 6400); digitalWrite(LED2, HIGH); break;
}
Serial.print("] value:");
Serial.println((int) value);
}void cleanLeds() { digitalWrite(LED0, LOW); digitalWrite(LED1, LOW); digitalWrite(LED2, LOW);
}void setup() {
Serial.begin(115200); ledcSetup(channel, hz, depth); ledcAttachPin(SERVO_PIN, channel); pinMode(LED0, OUTPUT); pinMode(LED1, OUTPUT); pinMode(LED2, OUTPUT); cleanLeds(); wifiConnect();
client.setServer(server, 1883);
client.setCallback(callback); delay(1500);
}void loop()
{ if (!client.connected()) { mqttReConnect();
}
client.loop(); delay(100);
}Here a video with the working prototype in action
还没有评论,说两句吧!
热门资源
DuReader_QANet_BiDAF
Machine Reading Comprehension on DuReader Usin...
ETD_cataloguing_a...
ETD catalouging project using allennlp
honk-models
Honk models google-speech-dataset.pt: model fo...
couleurs-des-van-...
couleurs-des-van-gogh
allennlp_extras
allennlp_extras Some utilities build on top of...
智能在线
400-630-6780
聆听.建议反馈
E-mail: support@tusaishared.com