资源算法facealignmentregression

facealignmentregression

2020-03-26 | |  100 |   0 |   0

Stage-wise Face Alignment using Global and Local Regressors

This is a caffe-python implementation on Windows 10 for face alignment.

We implemented two-kind of methods.

Method1 repeat global and local regression after initialization regression

图片.png

Method2 repeat local refinement regression after initialization regression

图片.png

Evaluation on 300w public test set

MethodCommonChallengingFull
Stage(Projection)8.2412.569.07
Stage(Adjustment)6.2510.167.02
Stage(Global1)4.668.205.35
Stage(Local1)3.456.494.05
Stage(Global2)3.596.624.18
Stage(Local2)3.296.143.85
Stage(Global3)3.486.374.05
Stage(Local3)3.286.093.83
Regression(Wild, simple net)4.076.904.62
Regression(Wild, ResNet50)3.726.444.25

Usage

For Training

  1. Clone the repository

git clone https://github.com/hyunsungP/facelignmentregression
  1. make data files (.h5)

make_wild_input.py

and so on.

  1. make data file list
    Refer to models/list_train_*.txt

  2. training
    On console window with caffe

caffe train --solver=models/ZF_solver.prototxt --gpu=0

Other network are same.

For Testing

Change prototxt path in the source code.

test_300w_public.py

Other models will be uploaded.


上一篇:Stabilized-Face-Detection-Bbox

下一篇:face-alignment-ert

用户评价
全部评价

热门资源

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • ETD_cataloguing_a...

    ETD catalouging project using allennlp

  • allennlp_extras

    allennlp_extras Some utilities build on top of...

  • allennlp-dureader

    An Apache 2.0 NLP research library, built on Py...

  • honk-honk-motherf...

    honk-honk-motherfucker