资源算法py_densenet

py_densenet

2020-03-30 | |  47 |   0 |   0

Tensorflow Implementation of DenseNets

Two types of Densely Connected Convolutional Networks (DenseNets) are available:

  • DenseNet - without bottleneck layers

  • DenseNet-BC - with bottleneck layers

Each model can be tested on such datasets:

  • Cifar10

  • Cifar10+ (with data augmentation)

  • Cifar100

  • Cifar100+ (with data augmentation)

  • ImageNet

Example run:

python train_densenet_cifar.py

There are also many other implementations - they may be useful also.

Citation:

@article{Huang2016Densely,
       author = {Huang, Gao and Liu, Zhuang and Weinberger, Kilian Q.},
       title = {Densely Connected Convolutional Networks},
       journal = {arXiv preprint arXiv:1608.06993},
       year = {2016}
}

Dependencies

  • Model was tested with Python 2.7 with and without CUDA.

  • Model should work as expected with TensorFlow >= 1.4.

Repo supported with requirements file - so the easiest way to install all just run pip install -r requirements.txt.





上一篇:FC-DenseNet-Keras

下一篇:DenseNet-Keras-implementation

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • Klukshu-Sockeye-...

    KLUKSHU SOCKEYE PROJECTS 2016 This repositor...