资源算法densenet-efficient-model

densenet-efficient-model

2020-03-30 | |  49 |   0 |   0

Densenet-efficient-model

Convert

In order to obtain the models for the efficient modelefficient model for PyTorch0.3 in PyTorch. You need to download the models from originl Torch models. And then convert the torch models to PyTorch models (You can also use the original convert_torch.py). Then they are converted to efficient models.

   python convert_torch.py -m densenet_cosine_264_k48.t7
   python convert_efficient.py

Note: You need to call correspoding function (Just one line code) in the main function in convert_efficient.py if you want to convert other models.

Efficient DenseNet models

DenseNet-264(k=32)

    growth_rate = 32
    block_config=(6,12,64,48)
    model = DenseNet_Efficient.DenseNetEfficient(num_init_features=64,
                                                 growth_rate = growth_rate,
                                                block_config = block_config,
                                                 num_classes = 1000,
                                                       cifar = False)

DenseNet-232(k=48)

    growth_rate = 48
    block_config=(6,12,48,48)
    model = DenseNet_Efficient.DenseNetEfficient(num_init_features=96,
                                                 growth_rate = growth_rate,
                                                block_config = block_config,
                                                 num_classes = 1000,
                                                       cifar = False)

DenseNet-cosine-264 (k=32)

    growth_rate = 32
    block_config=(6,12,64,48)
    model = DenseNet_Efficient.DenseNetEfficient(num_init_features=64,
                                                 growth_rate = growth_rate,
                                                block_config = block_config,
                                                 num_classes = 1000,
                                                       cifar = False)

DenseNet-cosine-264 (k=48)

    growth_rate = 48
    block_config=(6,12,64,48)
    model = DenseNet_Efficient.DenseNetEfficient(num_init_features=96,
                                                 growth_rate = growth_rate,
                                                block_config = block_config,
                                                 num_classes = 1000,
                                                       cifar = False)

Validated

All the models in this table can be converted and the results have been validated.

NetworkTop-1 errorDownload
DenseNet-264(k=32)22.1Download(129MB)
DenseNet-232(k=48)21.2Download(214MB)
DenseNet-cosine-264 (k=32)21.6DenseNet(129MB)
DenseNet-cosine-264 (k=48)20.4DenseNet(280MB)


上一篇:Fully-Convolutional-DenseNets

下一篇: tf-DenseNet

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • vsepp_tensorflow

    Improving Visual-Semantic Embeddings with Hard ...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...