资源算法densenet-efficient-model

densenet-efficient-model

2020-03-30 | |  69 |   0 |   0

Densenet-efficient-model

Convert

In order to obtain the models for the efficient modelefficient model for PyTorch0.3 in PyTorch. You need to download the models from originl Torch models. And then convert the torch models to PyTorch models (You can also use the original convert_torch.py). Then they are converted to efficient models.

   python convert_torch.py -m densenet_cosine_264_k48.t7
   python convert_efficient.py

Note: You need to call correspoding function (Just one line code) in the main function in convert_efficient.py if you want to convert other models.

Efficient DenseNet models

DenseNet-264(k=32)

    growth_rate = 32
    block_config=(6,12,64,48)
    model = DenseNet_Efficient.DenseNetEfficient(num_init_features=64,
                                                 growth_rate = growth_rate,
                                                block_config = block_config,
                                                 num_classes = 1000,
                                                       cifar = False)

DenseNet-232(k=48)

    growth_rate = 48
    block_config=(6,12,48,48)
    model = DenseNet_Efficient.DenseNetEfficient(num_init_features=96,
                                                 growth_rate = growth_rate,
                                                block_config = block_config,
                                                 num_classes = 1000,
                                                       cifar = False)

DenseNet-cosine-264 (k=32)

    growth_rate = 32
    block_config=(6,12,64,48)
    model = DenseNet_Efficient.DenseNetEfficient(num_init_features=64,
                                                 growth_rate = growth_rate,
                                                block_config = block_config,
                                                 num_classes = 1000,
                                                       cifar = False)

DenseNet-cosine-264 (k=48)

    growth_rate = 48
    block_config=(6,12,64,48)
    model = DenseNet_Efficient.DenseNetEfficient(num_init_features=96,
                                                 growth_rate = growth_rate,
                                                block_config = block_config,
                                                 num_classes = 1000,
                                                       cifar = False)

Validated

All the models in this table can be converted and the results have been validated.

NetworkTop-1 errorDownload
DenseNet-264(k=32)22.1Download(129MB)
DenseNet-232(k=48)21.2Download(214MB)
DenseNet-cosine-264 (k=32)21.6DenseNet(129MB)
DenseNet-cosine-264 (k=48)20.4DenseNet(280MB)


上一篇:Fully-Convolutional-DenseNets

下一篇: tf-DenseNet

用户评价
全部评价

热门资源

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • ETD_cataloguing_a...

    ETD catalouging project using allennlp

  • allennlp_extras

    allennlp_extras Some utilities build on top of...

  • allennlp-dureader

    An Apache 2.0 NLP research library, built on Py...

  • honk-honk-motherf...

    honk-honk-motherfucker