资源论文DeepFlow: Detecting Optimal User Experience From Physiological Data Using Deep Neural Networks

DeepFlow: Detecting Optimal User Experience From Physiological Data Using Deep Neural Networks

2019-09-29 | |  99 |   49 |   0
Abstract Flow is an affective state of optimal experience, total immersion and high productivity. While often associated with (professional) sports, it is a valuable information in several scenarios ranging from work environments to user experience evaluations, and we expect it to be a potential reward signal for human-in-the-loop reinforcement learning systems. Traditionally, flow has been assessed through questionnaires which prevents its use in online, real-time environments. In this work, we present our findings towards estimating a user’s flow state based on physiological signals measured using wearable devices. We conducted a study with participants playing the game Tetris in varying dif- ficulty levels, leading to boredom, stress, and flow. Using an end-to-end deep learning architecture, we achieve an accuracy of 67.50% in recognizing high flow vs. low flow states and 49.23% in distinguishing all three affective states boredom, flow, and stress

上一篇:DeepAPF: Deep Attentive Probabilistic Factorization for Multi-site Video Recommendation

下一篇:Discrete Trust-aware Matrix Factorization for Fast Recommendation

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...