资源算法Densenet_FinetuningForX-Ray

Densenet_FinetuningForX-Ray

2020-03-30 | |  59 |   0 |   0

Densenet_FinetuningForX-Ray

We hope to achieve an chest Xray detecting system

Pretrained DenseNet Models on ImageNet

The top-1/5 accuracy rates by using single center crop (crop size: 224x224, image size: 256xN)

NetworkTop-1Top-5TheanoTensorflow
DenseNet 121 (k=32)74.9192.19model (32 MB)model (32 MB)
DenseNet 169 (k=32)76.0993.14model (56 MB)model (56 MB)
DenseNet 161 (k=48)77.6493.79model (112 MB)model (112 MB)

Usage

First, download the above pretrained weights to the imagenet_models folder.

Run test_inference.py for an example of how to use the pretrained model to make inference.

python test_inference.py

for image viewer, write code:

d1 = dict[b'data'][1] print(d1) NewImage = Image.new('RGB', (32, 32)) print(d1[0]) pixelList = []

    for i in range(0, 1024):
        pixel = (d1[i], d1[i + 1024], d1[i + 2048])
        pixelList.append(pixel)
    print(pixelList)
    NewImage.putdata(pixelList)
    NewImage.save('test5.jpg')

Feel free to modify the code to your need





上一篇:densenet-galaxy-zoo

下一篇:Multimodal-Emotion-Recognition-DenseNet

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • Klukshu-Sockeye-...

    KLUKSHU SOCKEYE PROJECTS 2016 This repositor...