Abstract
Traditionally, distinguishing between high quality professional pho- tos and low quality amateurish photos is a human task. To automatically assess the quality of a photo that is consistent with humans perception is a challenging topic in computer vision. Various differences exist between photos taken by pro- fessionals and amateurs because of the use of photography techniques. Previous methods mainly use features extracted from the entire image. In this paper, based on professional photography techniques, we first extract the subject region from a photo, and then formulate a number of high-level semantic features based on this subject and background division. We test our features on a large and diverse photo database, and compare our method with the state of the art. Our method performs significantly better with a classification rate of 93% versus 72% by the best existing method. In addition, we conduct the first study on high-level video quality assessment. Our system achieves a precision of over 95% in a reason- able recall rate for both photo and video assessments. We also show excellent application results in web image search re-ranking.