资源论文Fourier Kernel Learning

Fourier Kernel Learning

2020-04-02 | |  90 |   46 |   0

Abstract

Approximations based on random Fourier embeddings have recently emerged as an efficient and formally consistent methodology to design large-scale kernel machines [23]. By expressing the kernel as a Fourier expansion, features are generated based on a finite set of ran- dom basis pro jections, sampled from the Fourier transform of the kernel, with inner products that are Monte Carlo approximations of the original non-linear model. Based on the observation that different kernel-induced Fourier sampling distributions correspond to different kernel parameters, we show that a scalable optimization process in the Fourier domain can be used to identify the different frequency bands that are useful for pre- diction on training data. This approach allows us to design a family of linear prediction models where we can learn the hyper-parameters of the kernel together with the weights of the feature vectors jointly. Under this methodology, we recover efficient and scalable linear reformulations for both single and multiple kernel learning. Experiments show that our linear models produce fast and accurate predictors for complex datasets such as the Visual Ob ject Challenge 2011 and ImageNet ILSVRC 2011.

上一篇:Bottom-Up Perceptual Organization of Images into Ob ject Part Hypotheses

下一篇:Graph Degree Linkage: Agglomerative Clustering on a Directed Graph

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...