资源论文Semi-intrinsic Mean Shift on Riemannian Manifolds

Semi-intrinsic Mean Shift on Riemannian Manifolds

2020-04-02 | |  65 |   35 |   0

Abstract

The original mean shift algorithm [1] on Euclidean spaces (MS) was extended in [2] to operate on general Riemannian manifolds. This extension is extrinsic (Ext-MS) since the mode seeking is performed on the tangent spaces [3], where the underlying curvature is not fully con- sidered (tangent spaces are only valid in a small neighborhood). In [3] was proposed an intrinsic mean shift designed to operate on two par- ticular Riemannian manifolds (IntGS-MS), i.e. Grassmann and Stiefel manifolds (using manifold-dedicated density kernels). It is then natural to ask whether mean shift could be intrinsically extended to work on a large class of manifolds. We propose a novel paradigm to intrinsically reformulate the mean shift on general Riemannian manifolds. This is ac- complished by embedding the Riemannian manifold into a Reproducing Kernel Hilbert Space (RKHS) by using a general and mathematically well-founded Riemannian kernel function, i.e. heat kernel [4]. The key issue is that when the data is implicitly mapped to the Hilbert space, the curvature of the manifold is taken into account (i.e. exploits the underlying information of the data). The inherent optimization is then performed on the embedded space. Theoretic analysis and experimental results demonstrate the promise and effectiveness of this novel paradigm.

上一篇:Graph Degree Linkage: Agglomerative Clustering on a Directed Graph

下一篇:Mixed-Resolution Patch-Matching

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...