资源论文A Unified View on Deformable Shape Factorizations

A Unified View on Deformable Shape Factorizations

2020-04-02 | |  96 |   88 |   0

Abstract

Multiple-view geometry and structure-from-motion are well established techniques to compute the structure of a moving rigid ob ject. These techniques are all based on strong algebraic constraints imposed by the rigidity of the ob ject. Unfortunately, many scenes of in- terest, e.g. faces or cloths, are dynamic and the rigidity constraint no longer holds. Hence, there is a need for non-rigid structure-from-motion (NRSfM) methods which can deal with dynamic scenes. A prominent framework to model deforming and moving non-rigid ob jects is the fac- torization technique where the measurements are assumed to lie in a low-dimensional subspace. Many different formulations and variations for factorization-based NRSfM have been proposed in recent years. However, due to the complex interactions between several subspaces, the distin- guishing properties between two seemingly related approaches are often unclear. For example, do two approaches just vary in the optimization method used or is really a different model beneath? In this paper, we show that these NRSfM factorization approaches are most naturally modeled with tensor algebra. This results in a clear pre- sentation which subsumes many previous techniques. In this regard, this paper brings several strings of research together and provides a unified point of view. Moreover, the tensor formulation can be extended to the case of a camera network where multiple static affine cameras observe the same deforming and moving non-rigid ob ject. Thanks to the insights gained through this tensor notation, a closed-form and an efficient iter- ative algorithm can be derived which provide a reconstruction even if there are no feature point correspondences at all between different cam- eras. An evaluation of the theory and algorithms on motion capture data show promising results.

上一篇:Detection of Independently Moving Objects in Non-planar Scenes via Multi-Frame Monocular Epipolar Constraint

下一篇:Hand Pose Estimation and Hand Shape Classification Using Multi-layered Randomized Decision Forests

用户评价
全部评价

热门资源

  • Deep Cross-media ...

    Cross-media retrieval is a research hotspot in ...

  • Regularizing RNNs...

    Recently, caption generation with an encoder-de...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...

  • Visual Reinforcem...

    For an autonomous agent to fulfill a wide range...