资源论文Multidimensional Spectral Hashing

Multidimensional Spectral Hashing

2020-04-02 | |  78 |   42 |   0

Abstract

With the growing availability of very large image databases, there has been a surge of interest in methods based on “semantic hash- ing”, i.e. compact binary codes of data-points so that the Hamming dis- tance between codewords correlates with similarity. In reviewing and comparing existing methods, we show that their relative performance can change drastically depending on the definition of ground-truth neighbors. Motivated by this finding, we propose a new formulation for learning bi- nary codes which seeks to reconstruct the affinity between datapoints, rather than their distances. We show that this criterion is intractable to solve exactly, but a spectral relaxation gives an algorithm where the bits correspond to thresholded eigenvectors of the affinity matrix, and as the number of datapoints goes to infinity these eigenvectors converge to eigenfunctions of Laplace-Beltrami operators, similar to the recently proposed Spectral Hashing (SH) method. Unlike SH whose performance may degrade as the number of bits increases, the optimal code using our formulation is guaranteed to faithfully reproduce the affinities as the number of bits increases. We show that the number of eigenfunctions needed may increase exponentially with dimension, but introduce a “ker- nel trick” to allow us to compute with an exponentially large number of bits but using only memory and computation that grows linearly with dimension. Experiments shows that MDSH outperforms the state-of-the art, especially in the challenging regime of small distance thresholds.

上一篇:Improving NCC-Based Direct Visual Tracking

下一篇:Tra jectory-Based Modeling of Human Actions with Motion Reference Points

用户评价
全部评价

热门资源

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...