资源论文Riemannian Sparse Coding for Positive Definite Matrices

Riemannian Sparse Coding for Positive Definite Matrices

2020-04-06 | |  70 |   51 |   0

Abstract

Inspired by the great success of sparse coding for vector val- ued data, our goal is to represent symmetric positive definite (SPD) data matrices as sparse linear combinations of atoms from a dictionary, where each atom itself is an SPD matrix. Since SPD matrices follow a non-Euclidean (in fact a Riemannian) geometry, existing sparse coding techniques for Euclidean data cannot be directly extended. Prior works have approached this problem by defining a sparse coding loss function using either extrinsic similarity measures (such as the log-Euclidean dis- tance) or kernelized variants of statistical measures (such as the Stein divergence, Jeffrey’s divergence, etc.). In contrast, we propose to use the intrinsic Riemannian distance on the manifold of SPD matrices. Our main contribution is a novel mathematical model for sparse coding of SPD matrices; we also present a computationally simple algorithm for optimizing our model. Experiments on several computer vision datasets showcase superior classification and retrieval performance compared with state-of-the-art approaches.

上一篇:Robust Sparse Coding and Compressed Sensing with the Difference Map

下一篇:Recognizing City Identity via Attribute Analysis of Geo-tagged Images

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...