资源论文Network-Specific Variational Auto-Encoder for Embedding in Attribute Networks

Network-Specific Variational Auto-Encoder for Embedding in Attribute Networks

2019-10-08 | |  63 |   35 |   0
Abstract Network embedding (NE) maps a network into a low-dimensional space while preserving intrinsic features of the network. Variational Auto-Encoder (VAE) has been actively studied for NE. These VAE-based methods typically utilize both network topologies and node semantics and treat these two types of data in the same way. However, the information of network topology and information of node semantics are orthogonal and are often from different sources; the former quantifies coupling relationships among nodes, whereas the latter represents node specific properties. Ignoring this difference affects NE. To address this issue, we develop a network-specific VAE for NE, named as NetVAE. In the encoding phase of our new approach, compression of network structures and compression of node attributes share the same encoder in order to perform co-training to achieve transfer learning and information integration. In the decoding phase, a dual decoder is introduced to reconstruct network topologies and node attributes separately. Specifi- cally, as a part of the dual decoder, we develop a novel method based on a Gaussian mixture model and the block model to reconstruct network structures. Extensive experiments on large real-world networks demonstrate a superior performance of the new approach over the state-of-the-art methods

上一篇:MineRL: A Large-Scale Dataset of Minecraft Demonstrations

下一篇:Nostalgic Adam: Weighting More of the Past Gradients When Designing the Adaptive Learning Rate

用户评价
全部评价

热门资源

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...