inferno
Inferno is a little library providing utilities and convenience functions/classes around PyTorch. It's a work-in-progress, but the latest release (0.3.1) should be fairly stable!
Free software: Apache Software License 2.0
Documentation: http://inferno-pytorch.readthedocs.io (Work in Progress).
Current features include:
a basic Trainer class to encapsulate the training boilerplate (iteration/epoch loops, validation and checkpoint creation),
a graph API for building models with complex architectures, powered by networkx.
easy data-parallelism over multiple GPUs,
a submodule for torch.nn.Module-level parameter initialization,
a submodule for data preprocessing / transforms,
support for Tensorboard (best with atleast tensorflow-cpu installed)
a callback API to enable flexible interaction with the trainer,
various utility layers with more underway,
a submodule for volumetric datasets, and more!
import torch.nn as nnfrom inferno.io.box.cifar import get_cifar10_loadersfrom inferno.trainers.basic import Trainerfrom inferno.trainers.callbacks.logging.tensorboard import TensorboardLoggerfrom inferno.extensions.layers.convolutional import ConvELU2Dfrom inferno.extensions.layers.reshape import Flatten# Fill these in:LOG_DIRECTORY = '...'SAVE_DIRECTORY = '...'DATASET_DIRECTORY = '...'DOWNLOAD_CIFAR = TrueUSE_CUDA = True# Build torch modelmodel = nn.Sequential(
ConvELU2D(in_channels=3, out_channels=256, kernel_size=3),
nn.MaxPool2d(kernel_size=2, stride=2),
ConvELU2D(in_channels=256, out_channels=256, kernel_size=3),
nn.MaxPool2d(kernel_size=2, stride=2),
ConvELU2D(in_channels=256, out_channels=256, kernel_size=3),
nn.MaxPool2d(kernel_size=2, stride=2),
Flatten(),
nn.Linear(in_features=(256 * 4 * 4), out_features=10),
nn.LogSoftmax(dim=1)
)# Load loaderstrain_loader, validate_loader = get_cifar10_loaders(DATASET_DIRECTORY, download=DOWNLOAD_CIFAR)# Build trainertrainer = Trainer(model)
.build_criterion('NLLLoss')
.build_metric('CategoricalError')
.build_optimizer('Adam')
.validate_every((2, 'epochs'))
.save_every((5, 'epochs'))
.save_to_directory(SAVE_DIRECTORY)
.set_max_num_epochs(10)
.build_logger(TensorboardLogger(log_scalars_every=(1, 'iteration'), log_images_every='never'), log_directory=LOG_DIRECTORY)# Bind loaderstrainer
.bind_loader('train', train_loader)
.bind_loader('validate', validate_loader)if USE_CUDA:
trainer.cuda()# Go!trainer.fit()To visualize the training progress, navigate to LOG_DIRECTORY and fire up tensorboard with
$ tensorboard --logdir=${PWD} --port=6007and navigate to localhost:6007 with your browser.
Conda packages for python >= 3.6 for all distributions are availaible on conda-forge:
$ conda install -c pytorch -c conda-forge inferno
Planned features include:
a class to encapsulate Hogwild! training over multiple GPUs,
minimal shape inference with a dry-run,
proper packaging and documentation,
cutting-edge fresh-off-the-press implementations of what the future has in store. :)
All contributors are listed here_. .. _here: https://inferno-pytorch.github.io/inferno/html/authors.html
This package was partially generated with Cookiecutter and the audreyr/cookiecutter-pypackage project template + lots of work by Thorsten.
上一篇:pyinn
还没有评论,说两句吧!
热门资源
DuReader_QANet_BiDAF
Machine Reading Comprehension on DuReader Usin...
flaireWebSite
flaireWebSite
TensorFlow-Course
This repository aims to provide simple and read...
tensorflow-sketch...
Discrlaimer: This is not an official Google pro...
My_DrQA
My_DrQA A re-implement DrQA based on Pytorch
智能在线
400-630-6780
聆听.建议反馈
E-mail: support@tusaishared.com