资源算法pytorch2caffe

pytorch2caffe

2019-10-09 | |  103 |   0 |   0

PyTorch2Caffe

Require Pytorch < 0.4

Ported from pytorch-caffe-darknet-convert.

Add support for

  • Dilated Convolution Layer

  • Concat Layer

  • Upsampling (converted to Deconvolution with bilinear initialization)

  • Eltwise Product

  • Sigmoid Layer

# We can obtain almost the same output from caffe except Upsampling# for inception_v3: # diff between pytorch and caffe: min: 0.0, max: 1.76429748535e-05, mean: 2.14079022953e-06# see more in demo.pyimport torchfrom torch.autograd import Variableimport torchvisionimport osfrom pytorch2caffe import pytorch2caffe, plot_graph

m = torchvision.models.inception_v3(pretrained=True, transform_input=False)
m.eval()print(m)

input_var = Variable(torch.rand(1, 3, 299, 299))
output_var = m(input_var)

output_dir = 'demo'# plot graph to pngplot_graph(output_var, os.path.join(output_dir, 'inception_v3.dot'))

pytorch2caffe(input_var, output_var, 
              os.path.join(output_dir, 'inception_v3-pytorch2caffe.prototxt'),
              os.path.join(output_dir, 'inception_v3-pytorch2caffe.caffemodel'))

上一篇:pytorch-caffe-darknet-convert

下一篇:pytorch-tools

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • vsepp_tensorflow

    Improving Visual-Semantic Embeddings with Hard ...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...