资源论文Image-to-Image Translation with Multi-Path Consistency Regularization

Image-to-Image Translation with Multi-Path Consistency Regularization

2019-10-09 | |  69 |   44 |   0
Abstract Image translation across different domains has attracted much attention in both machine learning and computer vision communities. Taking the translation from a source domain to a target domain as an example, existing algorithms mainly rely on two kinds of loss for training: One is the discrimination loss, which is used to differentiate images generated by the models and natural images; the other is the reconstruction loss, which measures the difference between an original image and the reconstructed version. In this work, we introduce a new kind of loss, multi-path consistency loss, which evaluates the differences between direct translation from source domain to target domain and indirect translation from source domain to an auxiliary domain to target domain, to regularize training. For multi-domain translation (at least, three) which focuses on building translation models between any two domains, at each training iteration, we randomly select three domains, set them respectively as the source, auxiliary and target domains, build the multi-path consistency loss and optimize the network. For two-domain translation, we need to introduce an additional auxiliary domain and construct the multi-path consistency loss. We conduct various experiments to demonstrate the effectiveness of our proposed methods, including face-toface translation, paint-to-photo translation, and deraining/de-noising translation

上一篇:HMLasso: Lasso with High Missing Rate

下一篇:Improving Representation Learning in Autoencoders via Multidimensional Interpolation and Dual Regularizations

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...