资源论文Outlier-Robust Multi-Aspect Streaming Tensor Completion and Factorization

Outlier-Robust Multi-Aspect Streaming Tensor Completion and Factorization

2019-10-09 | |  52 |   48 |   0
Abstract With the increasing popularity of streaming tensor data such as videos and audios, tensor factorization and completion have attracted much attention recently in this area. Existing work usually assume that streaming tensors only grow in one mode. However, in many real-world scenarios, tensors may grow in multiple modes (or dimensions), i.e., multi-aspect streaming tensors. Standard streaming methods cannot directly handle this type of data elegantly. Moreover, due to inevitable system errors, data may be contaminated by outliers, which cause significant deviations from real data values and make such research particularly challenging. In this paper, we propose a novel method for Outlier-Robust Multi-Aspect Streaming Tensor Completion and Factorization (OR-MSTC), which is a technique capable of dealing with missing values and outliers in multi-aspect streaming tensor data. The key idea is to decompose the tensor structure into an underlying low-rank clean tensor and a structured-sparse error (outlier) tensor, along with a weighting tensor to mask missing data. We also develop an efficient algorithm to solve the non-convex and non-smooth optimization problem of OR-MSTC. Experimental results on various real-world datasets show the superiority of the proposed method over the baselines and its robustness against outliers

上一篇:Noise-Resilient Similarity Preserving Network Embedding for Social Networks

下一篇:Planning with Expectation Models

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...