资源论文Heavy-ball Algorithms Always Escape Saddle Points

Heavy-ball Algorithms Always Escape Saddle Points

2019-10-09 | |  52 |   38 |   0
Abstract Nonconvex optimization algorithms with random initialization have attracted increasing attention recently. It has been showed that many first-order methods always avoid saddle points with random starting points. In this paper, we answer a question: can the nonconvex heavy-ball algorithms with random initialization avoid saddle points? The answer is yes! Direct using the existing proof technique for the heavy-ball algorithms is hard due to that each iteration of the heavy-ball algorithm consists of current and last points. It is impossible to formulate the algorithms as iteration like xk+1 = g(xk) under some mapping g. To this end, we design a new mapping on a new space. With some transfers, the heavy-ball algorithm can be interpreted as iterations after this mapping. Theoretically, we prove that heavy-ball gradient descent enjoys larger stepsize than the gradient descent to escape saddle points to escape the saddle point. And the heavyball proximal point algorithm is also considered; we also proved that the algorithm can always escape the saddle point

上一篇:Graph Space Embedding

下一篇:Hill Climbing on Value Estimates for Search-control in Dyna

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...