资源论文A Vectorized Relational Graph Convolutional Network for Multi-Relational Network Alignment

A Vectorized Relational Graph Convolutional Network for Multi-Relational Network Alignment

2019-10-09 | |  122 |   48 |   0
Abstract Alignment of multiple multi-relational networks, such as knowledge graphs, is vital for AI applications. Different from the conventional alignment models, we apply the graph convolutional network (GCN) to achieve more robust network embedding for the alignment task. In comparison with existing GCNs which cannot fully utilize multi-relation information, we propose a vectorized relational graph convolutional network (VR-GCN) to learn the embeddings of both graph entities and relations simultaneously for multi-relational networks. The role discrimination and translation property of knowledge graphs are adopted in the convolutional process. Thereafter, AVR-GCN, the alignment framework based on VR-GCN, is developed for multirelational network alignment tasks. Anchors are used to supervise the objective function which aims at minimizing the distances between anchors, and to generate new cross-network triplets to build a bridge between different knowledge graphs at the level of triplet to improve the performance of alignment. Experiments on real-world datasets show that the proposed solutions outperform the stateof-the-art methods in terms of network embedding, entity alignment, and relation alignment

上一篇:Unifying the Stochastic and the Adversarial Bandits with Knapsack

下一篇:Amalgamating Filtered Knowledge: Learning Task-customized Student from Multi-task Teachers

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...