资源论文Dual Self-Paced Graph Convolutional Network: Towards Reducing Attribute Distortions Induced by Topology

Dual Self-Paced Graph Convolutional Network: Towards Reducing Attribute Distortions Induced by Topology

2019-10-09 | |  50 |   40 |   0
Abstract The success of graph convolutional neural networks (GCNNs) based semi-supervised node classification is credited to the attribute smoothing (propagating) over the topology. However, the attributes may be interfered by the utilization of the topology information. This distortion will induce a certain amount of misclassifications of the nodes, which can be correctly predicted with only the attributes. By analyzing the impact of the edges in attribute propagations, the simple edges, which connect two nodes with similar attributes, should be given priority during the training process compared to the complex ones according to curriculum learning. To reduce the distortions induced by the topology while exploit more potentials of the attribute information, Dual Self-Paced Graph Convolutional Network (DSP-GCN) is proposed in this paper. Specifically, the unlabelled nodes with confidently predicted labels are gradually added into the training set in the node-level self-paced learning, while edges are gradually, from the simple edges to the complex ones, added into the graph during the training process in the edge-level self-paced learning. These two learning strategies are designed to mutually reinforce each other by coupling the selections of the edges and unlabelled nodes. Experimental results of transductive semi-supervised node classification on many real networks indicate that the proposed DSP-GCN has successfully reduced the attribute distortions induced by the topology while it gives superior performances with only one graph convolutional layer

上一篇:Distributed Collaborative Feature Selection Based on Intermediate Representation

下一篇:Generalized Majorization-Minimization for Non-Convex Optimization

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...