资源算法Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch

2019-09-10 | |  182 |   0 |   0

Asynchronous Advantage Actor-Critic in PyTorch

This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learning.

Since PyTorch has a easy method to control shared memory within multiprocess, we can easily implement asynchronous method like A3C.

Requirement

  • PyTorch 0.1.6

  • Python 3.5.2

  • gym 0.7.2

Usage

training

python run_a3c.py --atari

In default settings, num_process is 8. Set it as python run_a3c --num_process 4 to fit your number of cpu's cores.

test

After training

python test_a3c.py --render --monitor


上一篇:Monolingual and Multilingual Image Captioning

下一篇:ppo_pytorch_cpp

用户评价
全部评价

热门资源

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • ETD_cataloguing_a...

    ETD catalouging project using allennlp

  • allennlp_extras

    allennlp_extras Some utilities build on top of...

  • allennlp-dureader

    An Apache 2.0 NLP research library, built on Py...

  • honk-honk-motherf...

    honk-honk-motherfucker