资源论文Dynamic Electronic Toll Collection via Multi-Agent Deep Reinforcement Learning with Edge-Based Graph Convolutional Networks

Dynamic Electronic Toll Collection via Multi-Agent Deep Reinforcement Learning with Edge-Based Graph Convolutional Networks

2019-10-10 | |  76 |   58 |   0
Abstract Over the past decades, Electronic Toll Collection (ETC) systems have been proved the capability of alleviating traffic congestion in urban areas. Dynamic Electronic Toll Collection (DETC) was recently proposed to further improve the efficiency of ETC, where tolls are dynamically set based on traffic dynamics. However, computing the optimal DETC scheme is computationally difficult and existing approaches are limited to small scale or partial road networks, which significantly restricts the adoption of DETC. To this end, we propose a novel multi-agent reinforcement learning (RL) approach for DETC. We make several key contributions: i) an enhancement over the state-of-the-art RL-based method with a deep neural network representation of the policy and value functions and a temporal difference learning framework to accelerate the update of target values, ii) a novel edgebased graph convolutional neural network (eGCN) to extract the spatio-temporal correlations of the road network state features, iii) a novel cooperative multi-agent reinforcement learning (MARL) which divides the whole road network into partitions according to their geographic and economic characteristics and trains a tolling agent for each partition. Experimental results show that our approach can scale up to realistic-sized problems with robust performance and significantly outperform the stateof-the-art method

上一篇:Deep Reinforcement Learning for Ride-sharing Dispatching and Repositioning

下一篇:Failure-Scenario Maker for Rule-Based Agent using Multi-agent Adversarial Reinforcement Learning and its Application to Autonomous Driving

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to learn...

    The move from hand-designed features to learned...